Abstract
In this article we compare different force fields that are widely used (Gromacs, Charmm-22/x-Plor, Charmm-27, Amber-1999, OPLS-AA) in biophysical simulations containing aqueous NaCl. We show that the uncertainties of the microscopic parameters of, in particular, sodium, and, to a lesser extent, chloride, translate into large differences in the computed radial-distribution functions. This uncertainty reflect the incomplete experimental knowledge of the structural properties of ionic aqueous solutions at finite molarity. We discuss possible implications on the computation of potential of mean force and effective potentials. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 678–689, 2004
All Related Versions