Structures of Bacterial Flagellar Motors from Two FliF-FliG Gene Fusion Mutants

Abstract
Flagella purified from Salmonella enterica serovar Typhimurium contain FliG, FliM, and FliN, cytoplasmic proteins that are important in torque generation and switching, and FliF, a transmembrane structural protein. The motor portion of the flagellum (the basal body complex) has a cytoplasmic C ring and a transmembrane M ring. Incubation of purified basal bodies at pH 4.5 removed FliM and FliN but not FliG or FliF. These basal bodies lacked C rings but had intact M rings, suggesting that FliM and FliN are part of the C ring but not a detectable part of the M ring. Incubation of basal bodies at pH 2.5 removed FliG, FliM, and FliN but not FliF. These basal bodies lacked the C ring, and the cytoplasmic face of the M ring was altered, suggesting that FliG makes up at least part of the cytoplasmic face of the M ring. Further insights into FliG were obtained from cells expressing a fusion protein of FliF and FliG. Flagella from these mutants still rotated but cells were not chemotactic. One mutant is a full-length fusion of FliF and FliG; the second mutant has a deletion lacking the last 56 residues of FliF and the first 94 residues of FliG. In the former, C rings appeared complete, but a portion of the M ring was shifted to higher radius. The C-ring–M-ring interaction appeared to be altered. In basal bodies with the fusion-deletion protein, the C ring was smaller in diameter, and one of its domains occupied space vacated by missing portions of FliF and FliG.