Seasonal dynamics of mineral nutrients by walnut tree fruits

Abstract
Walnut (Juglans regia L.) tree fruit showed after the endocarp lignification a fast growing stage during which fresh and dry weights increased abruptly. From the beginning of fruit ripening and during the fast sperm growing stage, fresh weight started to decrease while dry weight continued to increase with a reduced growth rate. Dry weights increased in sperm and decreased in exocarp‐mesocarp tissues during the fast sperm growing stage. The material exit from pericarp tissues was completed in the ripe fruit. By contrast, fresh weight continued to decrease in the tissue. Patterns of nutrient accumulation per fruit increased continuously during the fruit growth period. The observed reductions of nutrient accumulations for total nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in the fruit individuals during the very late fruit stage after fruit ripening, and in conjunction with the pericarp tissues senescence, are supposed to represent mineral nutrient returns from the ripe fruit. Patterns of total N, P, Mg, Fe, and Zn accumulations increased in the exocarp‐mesocarp tissue during the slow sperm growing stage and decreased during the fast sperm growing stage. Potassium accumulation in the tissue increased continuously up to the fruit ripening time. Calcium, Mn, and Cu increased continuously. Patterns of all nutrients in endocarp tissue increased during the slow sperm growing stage and decreased at the fast sperm growing stage. In the sperm tissues, total N, P, Mg, and Ca accumulations increased during the sperm development and slightly decreased in a late stage. The increasing trend of Ca accumulation was temporarily interrupted during the fast sperm growing stage. Iron, Mn, Cu, and Zn accumulations showed no reductions at all. Potassium accumulation was drastically restricted in the tissue with the approach of fruit ripening. Sperm tissues are extraordinary rich in mineral nutrients. Sperm total N, P, Mg, Mn, Zn, Cu, and Fe accumulations represented the 98.1%, 88.2%, 59.2%, 81.5%, 72.3%, 65.6%, and 52.5% of the total nutrients accumulation in the fruit, respectively. Sperm K and Ca accumulations represented only the 13% and 11.6%, respectively. Exocarp‐mesocarp K, Ca, and Mg accumulations represented the 76%, 72% and 37.1% of the total nutrients accumulation in the fruit individual, respectively. Total N and P accumulation in the tissue were detected in very low levels 1.3% and 7%, respectively. Iron, Cu, Zn, and Mn accumulations were detected in the same tissue in ratio values of 27.5%, 22%, 5.4%, and 11%, respectively. Macro‐ and micro‐nutrient accumulations of the endocarp tissues were detected in the lower levels as compared to the other fruit tissues. The estimated values of mineral nutrient returns from the mature fruit individuals were 2.8% for total N, 13% for P, 16.5% for K, 23% for Ca, 12% for Mg, 28.5% for Fe, and 21% for Zn. Manganese and Cu showed no returns at all. The estimated nutrient returns from the sperm tissues were 60% for total N, 67% for P, 22% for K, and 50% for Mg of the total returned nutrient from the fruit individual. The estimated nutrient returns from exocarp‐mesocarp were 100% for Zn, Fe, and Ca, 50% for Mg, 78% for K, 33% for P, and 40% for total N. Calcium, Fe, Mn, Cu, and Zn in the sperm and Mn and Cu accumulations in pericarp tissues showed no returns at all. A restricted nutrient diffusion from exocarp‐mesocarp and sperm tissues to the endocarp tissues is supposed to be possible. These results suggested a pericarp tissue behaviour similar to the old senescing leaves.