Temperature dependence of Fano line shapes in a weakly coupled single-electron transistor

Abstract
We report the temperature dependence of the zero-bias conductance of a single-electron transistor in the regime of weak coupling between the quantum dot and the leads. The Fano line shape, convoluted with thermal broadening, provides a good fit to the observed asymmetric Coulomb charging peaks. However, the width of the peaks increases more rapidly than expected from the thermal broadening of the Fermi distribution in a temperature range for which Fano interference is unaffected. The intrinsic width of the resonance extracted from the fits increases approximately quadratically with temperature. Above about 600 mK the asymmetry of the peaks decreases, suggesting that phase coherence necessary for Fano interference is reduced.