Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes

Abstract
The majority of bioassays utilize thermosensitive reagents (e.g., biomolecules) and laboratory conditions for analysis. The developing world, however, requires inexpensive, simple-to-perform tests that do not require refrigeration or access to highly trained technicians. To address this need, paper-based bioassays using gold nanoparticle (AuNP) colorimetric probes have been developed. In the two prototype DNase I and adenosine-sensing assays, blue (or black)-colored DNA-cross-linked AuNP aggregates were spotted on paper substrates. The addition of target DNase I (or adenosine) solution dissociated the gold aggregates into dispersed AuNPs, which generated an intense red color on paper within one minute. Both hydrophobic and (poly(vinyl alcohol)-coated) hydrophilic paper substrates were suitable for this biosensing platform; by contrast, uncoated hydrophilic paper caused “bleeding” and premature cessation of the assay due to surface drying. The assays are surprisingly thermally stable. During preparation, AuNP aggregate-coated papers can be dried at elevated temperatures (e.g., 90 °C) without significant loss of biosensing performance, which suggests the paper substrate protects AuNP aggregate probes from external nonspecific stimuli (e.g., heat). Moreover, the dried AuNP aggregate-coated papers can be stored for at least several weeks without loss of the biosensing function. The combination of paper substrates and AuNP colorimetric probes makes the final products inexpensive, low-volume, portable, disposable, and easy-to-use. We believe this simple, practical bioassay platform will be of interest for use in areas such as disease diagnostics, pathogen detection, and quality monitoring of food and water.