Spatial learning for navigation in dynamic environments

Abstract
This article describes techniques that have been developed for spatial learning in dynamic environments and a mobile robot system, ELDEN, that integrates these techniques for exploration and navigation. In this research, we introduce the concept of adaptive place networks, incrementally-constructed spatial representations that incorporate variable-confidence links to model uncertainty about topological adjacency. These networks guide the robot's navigation while constantly adapting to any topological changes that are encountered. ELDEN integrates these networks with a reactive controller that is robust to transient changes in the environment and a relocalization system that uses evidence grids to recalibrate dead reckoning.

This publication has 18 references indexed in Scilit: