Phase Transition in Solid Molecular Hydrogen at Ultrahigh Pressures

Abstract
Solid normal hydrogen was compressed in a diamond-anvil cell to pressures above 200 GPa. Spontaneous Raman spectra demonstrate that the solid undergoes a structural phase transformation beginning at 145 GPa at 77 K, as evidenced by an abrupt discontinuity in the intramolecular vibron frequency as a function of pressure. The magnitude of the vibron-frequency shift and the pressure-temperature conditions of the phase transformation are consistent with its identification as the theoretically predicted pressure-induced orientational ordering of the molecular solid.