Fracture testing of silicon microelements i n s i t u in a scanning electron microscope

Abstract
Fracture testing of silicon cantilever beams (thicknesses 10–20 μm) was performed in situ in a scanning electron microscope by means of an equipment specially designed for this purpose. Beams of various sizes and orientations (〈011〉 and 〈001〉) were manufactured in Si (100) wafers by two different micromachining procedures. The beams were tested by simple bending to fracture, and a number of fundamental fracture parameters were determined from an analytical model of elastic fracture. To verify its validity, the model was utilized to evaluate an experimental E modulus, which was found to agree well with previous results. Fracture limits, fracture strains, and initiating flaw sizes were determined. The maximum fracture limit was very high; about 10 GPa. The strengths of different beams scattered from this value down to practically zero strength, with an average close to 4 GPa. The corresponding fracture strains and initiating flaw sizes were 6% and 3 nm, respectively (maximum strength), and 2% and 17 nm (average strength). Finally, a simple fractography study was performed on the fractured beams.