Mass Spectrometry Imaging of Small Molecules Using Desorption/Ionization on Silicon

Abstract
Development of novel tools to image spatial distribution of small molecules in biological samples is essential in disease diagnosis and biomarker discovery. To simplify sample preparation and reduce background noise in the low-mass region, we describe here the use of a matrix-free mass spectrometric imaging method, i.e., desorption/ionization on silicon (DIOS), for biological surface analysis. The imaging parameters, such as the laser beam diameter and the translation stage movement, were studied and optimized to improve imaging performance. The use of DIOS imaging to map small molecules on mouse liver tissues was demonstrated. In addition, phosphatidylcholine (PC) and propidium iodide (PI) were used as the cell membrane and nucleus markers, respectively, to "visualize" the presence of HEK 293 cells. The reconstructed ion maps of PC and PI were compared with the optical images collected from the same sample using bright-field and fluorescence microscopy. A good correlation of the spatial distribution of cells confirmed the validity of this DIOS imaging approach.