The dipole moment of water: Stark effects in D2O and HDO

Abstract
The dipole moment of D2O has been determined from Stark effect measurements for the 313–220 and 441–532 microwave transitions as 1·857 ± 0·006 and 1·869 ± 0·005D respectively. A rotational dependence of dipole moment has also been established for HDO through μa in the 220–221 and 532–533 transitions; μa was determined as 0·662 ± 0·001 and 0·644 ± 0·001D respectively. The total dipole moment for HDO has been determined from the 321–414 transition to be 1·85 ± 0·01D and to lie within 0·1° of the bisector of the HOD angle. High resolution Stark spectroscopy has been performed on the 624–615 transition of D2O with improved precision using the 337 μm emission line of the HCN laser. This experiment has confirmed the dipole results from the microwave work and the frequency of the 624–615 transition in D2O has been determined as 890 395 ± 3 MHz. The slight increase of dipole moment with deuteration is consistent with the dipole moment for H2O determined from the dielectric constant. This increase is discussed for the vibrational ground state (as for ammonia) in terms of anharmonicity in the bending vibration. The change of μ with rotational transition is interpreted in terms of large changes in molecular geometry for certain rotational states due to centrifugal distortion.