Global Estimates for Mixed Methods for Second Order Elliptic Equations
Open Access
- 1 January 1985
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 44 (169), 39-52
- https://doi.org/10.2307/2007791
Abstract
Global error estimates in <!-- MATH ${L^2}(\Omega )$ --> , <!-- MATH ${L^\infty }(\Omega )$ --> , and <!-- MATH ${H^{ - s}}(\Omega )$ --> , in <!-- MATH ${{\mathbf{R}}^2}$ --> or <!-- MATH ${{\mathbf{R}}^3}$ --> , are derived for a mixed finite element method for the Dirichlet problem for the elliptic operator <!-- MATH $Lp = - \operatorname{div}(a\;{\mathbf{grad}}\;p + {\mathbf{b}}p) + cp$ --> based on the Raviart-Thomas-Nedelec space <!-- MATH ${{\mathbf{V}}_h} \times {W_h} \subset {\mathbf{H}}(\operatorname{div};\Omega ) \times {L^2}(\Omega )$ --> . Optimal order estimates are obtained for the approximation of p and the associated velocity field <!-- MATH ${\mathbf{u}} = - (a\;{\mathbf{grad}}\;p + {\mathbf{b}}p)$ --> in <!-- MATH ${L^2}(\Omega )$ --> and <!-- MATH ${H^{ - s}}(\Omega )$ --> , <!-- MATH $0 \leqslant s \leqslant k + 1$ --> , and, if <!-- MATH $\Omega \subset {{\mathbf{R}}^2}$ --> for p in <!-- MATH ${L^\infty }(\Omega )$ --> .
Keywords
This publication has 8 references indexed in Scilit:
- OptimalL ∞-estimates for a mixed finite element method for second order elliptic and parabolic problemsCalcolo, 1983
- A remark on the rate of convergence for a mixed finite element method for second order problemsNumerical Functional Analysis and Optimization, 1982
- Error estimates for some mixed finite element methods for parabolic type problemsRAIRO. Analyse numérique, 1981
- Mixed finite elements in ?3Numerische Mathematik, 1980
- Polynomial Approximation of Functions in Sobolev SpacesMathematics of Computation, 1980
- A mixed finite element method for 2-nd order elliptic problemsPublished by Springer Nature ,1977
- An Observation Concerning Ritz-Galerkin Methods with Indefinite Bilinear FormsMathematics of Computation, 1974
- On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliersRevue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 1974