Abstract
1. The metabolism of glucose and the exchangeable Ca2+ pool were measured in rat pancreatic islets, in order to assess the possible significance of glycolysis in the process of glucose-induced insulin release. 2. At high glucose concentration (16.7 mM), glucose was metabolized at the following rate (pmol of glucose residue/h per islet +/- S.E.M.): 131 +/- 11 for glucose uptake, 129+/-8 for glucose utilization, as judged by the conversion of [5-3H]glucose into 3H2O,60+/-2 for lactate output and 25+/-2 for glucose oxidation. 3. The secretory pattern usually correlated with the metabolic data. For instance, the ability of different sugars (glucose, mannose, fructose, galactose, D-glyceraldehyde) to stimulate lactate output closely paralleled their relative insulinotropic capacity. A disparity between metabolic and secretory responses was, however, encountered in the presence of dibutyryl cyclic AMP and theophylline. 4. Despite this contrasting behaviour, the size of the Ca2+- exchangeable pool (net uptake of 45Ca2+) was invariably proportional to the rate of lactate output under all experimental conditions examined. It is concluded that glycolysis usually exerts a tight control on the rate constant for Ca2+ transport across the B-cell membrane.