Cellular Fate of a Modular DNA Delivery System Mediated by Silica Nanoparticles
- 5 September 2008
- journal article
- Published by Wiley in Biotechnology Progress
- Vol. 21 (2), 532-537
- https://doi.org/10.1021/bp049648w
Abstract
Development of efficient molecular medicines, including gene therapeutics, RNA therapeutics, and DNA vaccines, depends on efficient means of transfer of DNA or RNA into the cell. Potential problems, including toxicity and immunogenicity, surrounding viral methods of DNA delivery have necessitated the use of nonviral, synthetic carriers. To better design synthetic carriers, or transfection reagents, the modular design of viruses has inspired a modular approach to DNA and RNA delivery. Each modular component can be designed to circumvent each of the many barriers. The modular approach will allow modification of individual components for a specific application. By utilizing a dense silica nanoparticle to form a ternary complex, transfection efficiency of a DNA‐transfection reagent complex was increased by a factor of approximately 10 by concentrating the DNA at the surface of cells. Surface modification of the silica nanoparticles allowed determination of the cellular uptake mechanism with only minor alteration of transfection efficiency. Nanoparticles are internalized by an endosome‐lysosomal route followed by perinuclear accumulation. The modification mechanism confirms that surface modification of the modular system can allow specific moieties to be incorporated into the modular system without significant alteration of the transfection efficiency. By showing that the modular system based upon concentration of DNA at the level of the cell can be used to increase transfection efficiency, we have shown that further modification of the system may better target DNA delivery and overcome other barriers of DNA expression.Keywords
This publication has 14 references indexed in Scilit:
- Assessment of a Modular Transfection System Based upon Cellular Localization of DNAMolecular Pharmaceutics, 2004
- A self-assembled, modular DNA delivery system mediated by silica nanoparticlesJournal of Controlled Release, 2004
- The challenge of gene therapy and DNA deliveryJournal of Pharmacy and Pharmacology, 2001
- Key issues in non-viral gene delivery1PII of original article: S0169-409X(98)00048-9. The article was originally published in Advanced Drug Delivery Reviews 34 (1998) 3–19.1Advanced Drug Delivery Reviews, 2001
- Enhancement of transfection by physical concentration of DNA at the cell surfaceNature Biotechnology, 2000
- Synthetic DNA delivery systemsNature Biotechnology, 2000
- Enhancement of Polylysine-Mediated Transferrinfection by Nuclear Localization Sequences: Polylysine Does Not Function as a Nuclear Localization SequenceHuman Gene Therapy, 1999
- In Vitro Gene Delivery by Degraded Polyamidoamine DendrimersBioconjugate Chemistry, 1996
- A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proceedings of the National Academy of Sciences, 1995
- Polyamidoamine cascade polymers mediate efficient transfection of cells in cultureBioconjugate Chemistry, 1993