Intracellular Calcium Concentration and Growth Hormone Secretion in Individual Somatotropes: Effects of Growth Hormone-Releasing Factor and Somatostatin*

Abstract
The cytosolic free calcium concentration and cumulative GH release were measured simultaneously in normal pituitary cells. This was made possible by a novel combination of fluorescence microscopy using the calcium indicator fura-2 and a reverse hemolytic plaque assay. GRF (10 nM) rapidly increased the intracellular free calcium concentration ([Ca2+]i) from a basal level of 234 .+-. 17 nM (mean .+-. SE) to a peak value of 480 .+-. 61 nM 1 min after stimulation. This GRF-induced calcium rise was totally abolished in calcium-free medium or in the presence of calcium channel blockers cobalt chloride (2 mM) and verapamil (100 .mu.M). When somatostatin (SRIF; 1 nM) was added after basal recordings, cytosolic calcium decreased to 96 .+-. 23 nM in identified somatotropes. [Ca2+]i returned to baseline upon the removal of SRIF inhibition. This rebound was higher when a sequential treatment of SRIF followed by GRF was applied. Exposing cells to a combination of GRF (10 nM) plus SRIF (1 nM) resulted in a decrease in [Ca2+]i identical to that caused by SRIF treatment alone. Despite the 10-fold excess of GRF, SRIF not only inhibited hormone secretion, but also totally overcame the GRF-induced rise of [Ca2+]i. In summary, stimulation by GRF increases cytosolic calcium in normal somatotropes. This increase is proposed to be due to the influx of calcium through membrane ion channels. In contrast, SRIF decreases [Ca2+]i. This might explain the cAMP-independent effects of this peptide. The effect of SRIF dominates over that of GRF with respect to both changes in [Ca2+]i and hormone release. Changes in the GH secretory rate are, therefore, accompanied by parallel changes in [Ca2+]i, both of which are primarily regulated by SRIF.