Asymmetric Reduction of Acetophenone with Calcium‐Alginate‐Entrapped Baker's Yeast in Organic Solvents

Abstract
Baker's yeast cells entrapped in alginate beads are shown to catalyze reactions in organic solvents when a cofactor regeneration scheme is implemented. This study focused on the reduction of acetophenone to 1‐phenylethanol, using baker's yeast as well as a cosubstrate to regenerate the cofactor. The product is a chiral alcohol, and it was desired to maintain a high enantiomeric excess. The effects of parameters such as the addition of a cosubstrate, water content, fermentation time, buffer pH, and bead diameter have been investigated. Such a general process may be quite useful when single enantiomers are needed, as well as for the production of other chemicals.