Abstract
We investigate the robust filter design problem for a class of nonlinear time-delay stochastic systems. The system under study involves stochastics, unknown state time-delay, parameter uncertainties, and unknown nonlinear disturbances, which are all often encountered in practice and the sources of instability. The aim of this problem is to design a linear, delayless, uncertainty-independent state estimator such that for all admissible uncertainties as well as nonlinear disturbances, the dynamics of the estimation error is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are proposed to guarantee the existence of desired robust exponential filters, which are derived in terms of the solutions to algebraic Riccati inequalities. The developed theory is illustrated by numerical simulation.

This publication has 31 references indexed in Scilit: