Hollow-Channel Paper Analytical Devices

Abstract
We present a microfluidic paper analytical device (μPAD) that relies on flow in hollow channels, rather than through a cellulose network, to transport fluids. The flow rate in hollow channels is 7 times higher than in regular paper channels and can be conveniently controlled from 0 to several mm/s by balancing capillary and pressure forces. More importantly, the pressure of a single drop of liquid (∼0.2 mbar) is sufficient to induce fast pressure-driven flow, making hollow channels suitable for point of care diagnostics. We demonstrate their utility for simple colorimetric glucose and BSA assays in which the time for liquid transport is reduced by a factor of 4 compared to normal cellulose channels.