Properties of the hadronic system resulting fromν¯μpinteractions

Abstract
The properties of the final-state hadronic system in antineutrino-proton charged-current interactions are presented. The events were observed in the Fermilab 15-foot hydrogen bubble chamber. The average energy of the events is ∼30 GeV, but there are some interactions beyond 100 GeV. The mean multiplicity of the charged hadrons varies as nCH=(0.06±0.06)+(1.22±0.03)lnW2 for hadronic masses W in the range 1.0<W2<50 GeV2. By contrast, the multiplicity depends only weakly on the four-momentum transfer between the leptons. The mean pion multiplicities for events with three or more charged tracks are found to be n=1.64±0.04, n0=1.16±0.13, for π and π0 production, respectively. By comparing the number of positive tracks with π data from neutrino production, we deduce a mean proton multiplicity np of 0.53 ± 0.15. The single-particle distributions in both longitudinal and transverse momentum are found to be similar to those for nondiffractive production in hadronic collisions. The fragmentation properties of the final-state d quarks are compared to the expectations of the quark-parton model. The fraction of observed neutral-strange-particle production for events with three or more charged tracks is 0.08 ± 0.015 and is consistent with coming completely from associated production.