IONIC TRANSFER ACROSS THE ISOLATED FROG LARGE INTESTINE

Abstract
The unidirectional fluxes of sodium, chloride, and of the bicarbonate and CO2 pair were determined across the isolated large intestine of the bullfrog, Rana catesbiana. The isolated large intestine of the frog is characterized by a mean transmembrane potential of 45 mv., serosal surface positive with respect to mucosal. The unidirectional sodium flux from mucosal to serosal surface was found to be equal to the short-circuit current, thus the net flux was less than the simultaneous short-circuit current. This discrepancy between active sodium transport and short-circuit current can be attributed to the active transport of cation in the same direction as sodium and/or the active transport of anion in the opposite direction. The unidirectional fluxes of chloride and the bicarbonate and CO2 pair revealed no evidence for active transport of either anion. A quantitative study of chloride fluxes at 45 mv. revealed a flux ratio of 1.8 which is considerably less than a ratio of 6 expected for free passive diffusion. It was concluded that a considerable proportion of the isotopic transfer of chloride could be attributed to "exchange diffusion." Study of the electrical properties of the isolated frog colon reveals that it can be treated as a simple D. C. resistance over the range of -20 to +95 mv.