Abstract
The membrane type 1 matrix metalloproteinase (MT1-MMP) has been identified as a major activator of MMP-2 – a process involving the formation of a trimolecular complex with TIMP-2. We previously identified the IGF-I receptor as a positive regulator of MMP-2 synthesis. Here, we investigated the role of IGF-IR in the regulation of MT1-MMP. Highly invasive Lewis lung carcinoma subline H-59 cells express MT1-MMP and utilize it to activate their major extracellular matrix degrading proteinase-MMP-2. These cells were transiently transfected with a plasmid vector expressing a luciferase reporter gene downstream of the mouse MT1-MMP promoter. IGF-I treatment increased luciferase activity in the transfected cells by up to 10-fold and augmented endogenous MT1-MMP mRNA and protein synthesis by up to 2–3-fold, relative to controls. MT1-MMP induction and invasion were blocked by the PI 3-kinase inhibitors LY294002 and wortmannin and by rapamycin, but not by the MEK inhibitor PD98059. Overexpression of a dominant negative Akt mutant or of the tumor suppressor phosphatase and tensin homologue, PTEN, in these cells also caused a significant reduction in MT1-MMP expression and invasion. The results demonstrate that IGF-IR controls tumor cell invasion by coordinately regulating MMP-2 expression and its MT1-MMP-mediated activation and identify PI 3-kinase/Akt/mTOR signaling as critical to this regulation.