Two Dimensional Electrons in a Lateral Magnetic Superlattice

Abstract
We report, for the first time, ballistic magnetoresistance effects in a two-dimensional electron gas (2DEG) subjected to a spatially modulated periodic magnetic field. The periodic magnetic field is formed by the presence of superconducting stripes on the surface of the heterostructure with a 2DEG. We observe oscillatory magnetoresistance due to a commensurability effect between the classical cyclotron diameter and the period of magnetic modulation. The behavior is in agreement with existing theory with no adjustable parameters.