Two modes of phosphate transport by turtle urinary bladder

Abstract
The effects of changes in pH and addition of CO2/HCO3- on transepithelial phosphate transport were studied in turtle urinary bladder. Net mucosa-to-serosa flux of phosphate (JP) was determined as the difference between unidirectional 32P fluxes in the absence of transepithelial electrochemical gradients. With 5 mM phosphate in HCO3--free Ringer at pH 8.4, JP was 21.8 +/- 7.4 nmol . 8 cm-2 . h-1. There was a slight increase in JP with isohydric addition of 10 mM HCO3-. Addition of 5% CO2, which reduced pH to 7.3, did not affect JP. At pH 8.4, JP was not affected by ouabain or dinitrophenol and increased progressively as phosphate concentration was raised between 0.5 and 10 mM. At pH 6.2 in the absence of exogenous CO2 and HCO3-, JP was undectable. With 2.5 mM HCO3- and 5% CO2 at pH 6.5, JP was 61.3 +/- 16.0 and decreased to 30.6 +/- 1.6 nmol . 8 cm-2 . h-1 when pH was raised to 7.2 by increasing HCO3- to 10 mM. At pH 6.5 JP was inhibited by both ouabain and dinitrophenol. These results suggest that at acidic pH, JP results from the tranport of H2PO4-. The transport of H2PO4- is CO2 dependent and inhibited by ouabain and dinitrophenol. In contrast, at alkaline pH, JP results from the transport of HPO4(2-), which is neither CO2 dependent nor inhibited by ouabain or dinitrophenol.