Excitonic Nonlinearities of Semiconductor Microcavities in the Nonperturbative Regime

Abstract
A microscopic theory for excitonic nonlinearities and light propagation in semiconductor microcavities is applied to study normal-mode coupling (NMC) for varying electron-hole-pair densities. The nonlinear susceptibility of quantum confined excitons is determined from quantum kinetic equations including dephasing due to carrier-carrier and polarization scattering. The predicted disappearing of the normal-mode transmission peaks with negligible change in the NMC splitting agrees well with cw pump-probe measurements on samples showing remarkable splitting-to-linewidth ratios.