Abstract
Single unit recordings in the nucleus of the basal optic root (nBOR) of the accessory optic system in chickens suggest that it has a role in vertical stabilizing eye movements. Cells have unusually large receptive fields and never respond to small stationary stimuli. They respond best to large richly patterned stimuli moving slowly (2–4 °/s) in vertical directions. Cells responsive to upward movement tend to be located in the dorsal portion of nBOR, which projects to motor areas producing upward eye movement, whereas cells responsive to downward movement tend to be located in the ventral portion of nBOR, which projects to motor areas producing downward eye movement; this suggests that these synapses onto oculomotor neurons are excitatory. In many nBOR units, the preferred and null directions are not opposite to each other. These directional asymmetries seem to be correlated with other properties of the units in a manner that supports the idea that the accessory optic system is arranged according to a vestibular coordinate system. This finding complements the abundant anatomical and physiological evidence linking the accessory optic system to the vestibular system.