Abstract
We present a study of the superfluid properties of atomic Bose gases in optical lattice potentials using the Bose-Hubbard model. To do this, we use a microscopic definition of the superfluid fraction based on the response of the system to a phase variation imposed by means of twisted boundary conditions. We compare the superfluid fraction to other physical quantities, i.e., the interference pattern after ballistic expansion, the quasimomentum distribution, and number fluctuations. We have performed exact numerical calculations of all these quantities for small one-dimensional systems. We show that the superfluid fraction alone exhibits a clear signature of the Mott-insulator transition. Observables like the fringe visibility, which probe only ground-state properties, do not provide direct information on superfluidity and the Mott-insulator transition.
All Related Versions