Transport of Salicylic Acid in Tobacco Necrosis Virus-Infected Cucumber Plants

Abstract
The transport of salicylic acid (SA) was studied in cucumber (Cucumis sativus L.) using 14C-labeled benzoic acid that was injected in the cotyledons at the time of inoculation. Primary inoculation with tobacco necrosis virus (TNV) on the cotyledons led to an induction of systemic resistance of the first primary leaf above the cotyledon against Colletotrichum lagenarium as early as 3 d after inoculation. [14C]SA was detected in the phloem or in the first leaf 2 d after TNV inoculation, whereas [14C]benzoic acid was not detected in the phloem during the first 3 d after TNV inoculation of the cotyledons, indicating phloem transport of [14C]SA from cotyledon. In leaf 1, the specific activity of [14C]SA decreased between 1.7 and 8.6 times compared with the cotyledons, indicating that, in addition to transport, leaf 1 also produced more SA. The amount of SA transported after TNV infection of the cotyledon was 9 to 160 times higher than in uninfected control plants. Thus, SA can be transported to leaf 1 before the development of systemic acquired resistance, and SA accumulation in leaf 1 results both from transport from the cotyledon and from synthesis in leaf 1.