Abstract
The effect of a rigid circular cylinder, wholly immersed within and lying parallel to the free surface of an incompressible and inviscid fluid, on straight‐crested surface waves passing overhead is investigated. A mode of analysis is developed, on the hypotheses of small amplitude and time‐periodic fluid motions, that encompasses all directions of incidence of the primary wave; and is used to extend results previously obtained in the case of normal incidence. It is shown, in particular, that the absence of surface‐wave reflection at normal incidence gives way to a partial reflection for other primary directions, which in turn verges on completeness as the direction of the incoming wave becomes more closely aligned with that of the cylinder axis.

This publication has 4 references indexed in Scilit: