The antimycotic ciclopirox olamine induces HIF‐1α stability, VEGF expression, and angiogenesis

Abstract
The heterodimeric hypoxia-inducible factor (HIF)-1 is a master regulator of oxygen homeostasis. Protein stability and transactivation function of the alpha subunit are controlled by iron- and oxygen-dependent hydroxylation of proline and asparagine residues. The anti-mycotic ciclopirox olamine (CPX) is a lipophilic bidentate iron chelator that stabilizes HIF-1alpha under normoxic conditions at lower concentrations than other iron chelators, probably by inhibiting HIF-1alpha hydroxylation. As shown by the inhibition of iron-dependent quenching of FITC-labeled deferoxamine (DFX) fluorescence, CPX appears to have an even higher affinity for iron than DFX. Initial observations that treatment with 1% CPX, but not with placebo, occasionally caused reddening of wound margins in a mouse skin wound model prompted us to investigate the capability of CPX to induce angiogenesis. CPX-induced HIF-1-mediated reporter gene activity and endogenous HIF-1 target gene expression, including elevation of transcription, mRNA, and protein levels of the vascular endothelial growth factor (VEGF). In the chick chorioallantoic membrane assay, inert polymer disks containing CPX but not the solvent alone induced angiogenesis. In summary, these results suggest that CPX induces angiogenesis in vivo via HIF-1 and VEGF induction. Therefore, CPX might serve as an alternative to recombinant VEGF treatment or to VEGF gene therapy for therapeutic angiogenesis.
Funding Information
  • Deutsche Forschungsgemeinschaft (WE2672/1‐1)

This publication has 53 references indexed in Scilit: