Abstract
Acute leukemia is associated with a wide spectrum of recurrent, non-random chromosomal translocations. Molecular analysis of the genes involved in these translocations has led to a better understanding of both the causes of chromosomal rearrangements as well as the mechanisms of leukemic transformation. Recently, a number of laboratories have cloned translocations involving the NUP98 gene on chromosome 11p15.5, from patients with acute myelogenous leukemia (AML), myelodysplastic syndrome (MDS), chronic myelogenous leukemia (CML), and T cell acute lymphoblastic leukemia (T-ALL). To date, at least eight different chromosomal rearrangements involving NUP98 have been identified. The resultant chimeric transcripts encode fusion proteins that juxtapose the N-terminal GLFG repeats of NUP98 to the C-terminus of the partner gene. Of note, several of these translocations have been found in patients with therapy-related acute myelogenous leukemia (t-AML) or myelodysplastic syndrome (t-MDS), suggesting that genotoxic chemotherapeutic agents may play an important role in generating chromosomal rearrangements involving NUP98.