Protonation and Light Synergistically Convert Plasmalemma Sugar Carrier System in Mesophyll Protoplasts to its Fully Activated Form

Abstract
The course of sugar fluxes into and out of protoplasts isolated from the mesophyll of Pisum sativum L. has been followed over brief time intervals (minutes). Light strongly stimulated net sugar influx at pH 8 as well as at pH 5.5. The proton conductor carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited initial influx in the light, both at pH 8.0 and at pH 5.5. CCCP was without effect in the dark at either pH. All these results applied both to sucrose and to the nonmetabolizable glucose analog 3-O-methyl-d-glucose. When protoplasts at pH 5.5 were transferred from light to darkness, “stored” light driving force maintained uptake in the dark at the full light rate for the first 7 minutes. At pH 8, however, even 4 minutes after transfer to dark, uptake was well below the light rate. Initial uptake rates over a range of external concentrations were derived from progress curves obtained in the light and in the dark, both at pH 5.5 and at 7.7. When initial rate was plotted against concentration, simple Michaelis-Menten kinetics were observed only under the condition pH 5.5, light. In the dark at both pH values, and in the light at pH 7.7, complex curves with intermediate plateaus were obtained, strongly resembling curves reported for systems where mixed negative and positive cooperativity is operating. The same “Km for protons” was observed in the dark and in the light (10−7 molar). Switching protoplasts in the dark from pH 8 to 5.5 failed to drive sugar transport by imposed protonmotive force, as judged by lack of sensitivity to CCCP. Switching protoplasts which had taken up sugar in the dark at pH 5.5 to pH 7 induced net efflux of sugar. Flux analysis showed that this effect was entirely due to the prompt fall in influx. It is concluded from the kinetic experiments that protonation alone is not sufficient to convert the sugar transport system to its fully activated high affinity form. A further light-dependent factor which acts synergistically with protonation is required.