Direct Measurement of Stress at the Base of a Glacier

Abstract
Contact stress transducers were placed in subglacial bedrock and used to monitor continuously shear stress and normal pressure changes at the contact with the overriding glacier sole 100 m beneath the surface of the Glacier d’Argentière during periods in summer 1973 and spring 1975. The measured fluctuations in normal pressure and shear stress do not appear to be related to changes in sliding velocity. Analysis of the data reveals short-term fluctuations in normal pressure and shear stress which appear to be related to the passage of individual large debris particles or groups of particles over the transducer. The shear stress appears to be a function of the volume concentration of debris in the ice. The volume concentration at any point appears to be partially dependent on a “streaming” process by which basal debris-rich ice tends to flow around the lateral flanks of hummocks on the glacier bed. Where sub-glacial cavities occur, this streaming effect appears to be dependent on the extent of cavitation and thus on ice overburden pressure and velocity. It is suggested that this process can account for an apparent lag between changes in normal pressure and shear stress. The maximum ratio between shear and normal stress averaged over a period of 10 min was 0.44. This is equivalent to a spatial average over 0.3 cm. Debris concentrations in basal ice of up to 43% by volume occurred. It is suggested that concentrations of this order are common at the base of temperate glaciers and thus that a significant part of the drag at the base of a glacier may be contributed by frictional interactions between the basal-debris load and the bed. Résumé Des jauges de contrainte par contact ont été placées sur le lit sous-glaciaire et utilisées pour relever en continu les variations de la pression normale et de la contrainte de cisaillement au contact avec la face inférieure du glacier à 100 m sous la surface du glacier d’Argentière pendant des périodes de l’été 1973 et du printemps 1975. Les fluctuations mesurées dans la pression normale et la contrainte de cisaillement ne semblent pas être correlées aux variations de la vitesse de glissement. L’analyse des données révèle des fluctuations de courte durée dans la pression normale et la contrainte de cisaillement qui semblent liées au passage de gros blocs morainiques isolés ou de groupes de blocs au-dessus du capteur. Le cisaillement paraît être fonction de la concentration en volume des matériaux morainiques dans la glace. La concentration en volume en un point semble dépendre en partie d’un processus de “courant” par lequel la glace basale riche en moraine tend à s’écouler autour des flancs latéraux des protubérances du lit glaciaire. Lorsqu’il se produit des cavités sous-glaciaires, cet effet de courant paraît lié à l’importance de la cavité et donc à la vitesse et à la pression de la glace de couverture. On suggére que ce processus peut rendre compte d’un apparent décalage entre les changements de pression normale et de contrainte de cisaillement. Le rapport maximum du cisaillement à la pression normale moyenne pour une durée de dix minutes était 0,44. Ceci correspond à une moyenne spatiale sur 0,3 cm. On à trouvé des concentrations en moraines supérieures à 43% en volume. On suggère que des concentrations de cet ordre sont communes à la base des glaciers tempérés et que, par conséquent, une part significative de la résistance au mouvement à la base d’un glacier peut provenir des interactions de frottement entre la moraine de fond et le lit. Zusammenfassung In den Felsuntergrund des Glacier d’Argentière wurden Geräte zur Aufnahme der Kontaktspannung eingebracht, welche die Änderungen der Scherspannung und des Normaldruckes an der Grenzfläche zu dem darübergleitenden Gletscher 100 m unter der Oberfläche in Messperioden während des Sommers 1973 und Frühlings 1975 kontinuierlich aufzeichneten. Die gemessenen Schwankungen des Normaldrucks und der Scherspannung scheinen nicht mit den Änderungen der Gleitgeschwindigkeit in Beziehung zu stehen. Die Analyse der Daten zeigt kurzfristige Fluktuationen im Normaldruck und in der Scherspannung, die offensichtlich mit dem Vorbeigang einzelner, grosser Schuttpartikel oder Gruppen solcher Partikel an den Messgeräten verknüpft sind. Die Scherspannung scheint eine Funktion der Volumenkonzentration des Schutts im Eis zu sein Diese Konzentration dürfte an einem beliebigen Punkt teilweise von einem Vorgang der “Umströmung” abhängig sein, in dem schuttreiches Grundeis um die seitlichen Flanken von Felsbuckeln im Gletscherbett fliesst. Treten subglaziale Hohlräume auf, so zeigt sich eine Abhängigkeit dieses Strömungseffektes vom Ausmass der Kavitation und damit vom Überlagerungsdruck und der Geschwindigkeit des Eises. Man kann annehmen, dass dieser Vorgang der Grund für auftretende Phasenunterschiede zwischen den Änderungen des Normaldruckes und der Scherspannung ist. Das maximale Verhältnis von Scher- zu Schubspannung, gemittelt über 10 min, war 0,44. Dies entspricht einem räumlichen Mittel über 0,3 cm. Es traten Schuttkonzentrationen bis zu 43% des Volumens auf. Konzentrationen dieser Grössenordnung kommen vermutlich häufig am Grunde temperierter Gletscher vor; daraus ergibt sich, dass ein Grossteil der Hemmkraft am Gletscheruntergrund von der Reibungswirkung zwischen der Schuttlast und dem Felsbett herrührt.