Down-regulation of protein kinase C potentiates angiotensin II-stimulated polyphosphoinositide hydrolysis in vascular smooth-muscle cells

Abstract
In smooth-muscle cells (SMC) isolated from rat aorta, angiotensin II stimulates a phospholipase C with subsequent formation of inositol trisphoshoate (InsP2). Short-term (10 min) pretreatment of SMC with 12-O-tetradecanoylphorbol 13-acetate (TPA; 100 nM) decreases the angiotensin II-induced InsP3 formation. However, this inhibition is not observed after incubating the cells for 2 h with TPA. Longer-term pretreatments even lead to an enhanced generation of InsP3. This increased response to angiogtensin II occurs without a significant change in the receptor number of Kd value of angiotensin II binding to the cells. The biologically inactive phorbol ester 4.alpha.-phorbol 12,13-didecanoate was without effect on angiotensin II-stimulated InsP3 generation, irrespective of the time of preincubation. In parallel with this potentiation of angiotensin II-induced generation of InsP3 by TPA, a down-regulation of protein kinase C activity is observed. A 24 h pretreatment of SMC with TPA decreases protein kinase C activity to less than 10% of that of control cells. Longer-term pretreatment also increases the angiotensin II-induced release of Ca2+ and delays the decay of the transient Ca2+ increase. All these data suggest that protein kinase C exerts a negative feedback control on angiotensin II-stimulated polyphosphoinositide turnover, and that protein kinase C is an important factor in limiting the production of InsP3 in stimulated cells.