Contribution of Natural Amino Acid Substitutions in SHV Extended-Spectrum β-Lactamases to Resistance against Various β-Lactams

Abstract
SHV extended-spectrum β-lactamases (ESBLs) arise through single amino acid substitutions in the parental enzyme, SHV-1. In order to evaluate the effect of genetic dissimilarities around the structural gene on MICs, we had previously devised an isogenic system of strains. Here, we present an extended version of the system that now allows assessment of all major types of SHV β-lactamases as well as of two types of promoters of various strengths. Moreover, we devised a novel vector, pCCR9, to eliminate interference of the selection marker. A substitution within the signal sequence, I8F found in SHV-7, slightly increased MICs, suggesting more efficient transfer of enzyme precursor into the periplasmic space. We also noted that combination of G238S and E240K yielded higher resistance than G238S alone. However, the influence of the additional E240K change was more pronounced with ceftazidime and aztreonam than with cefotaxime and ceftriaxone. The SHV enzymes characterized by the single change, D179N, such as SHV-8, turned out to be the weakest SHV ESBLs. Only resistance to ceftazidime was moderately increased compared to SHV-1.