Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR–Chk1/2–Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells
Open Access
- 23 June 2005
- journal article
- research article
- Published by Oxford University Press (OUP) in Carcinogenesis: Integrative Cancer Research
- Vol. 26 (11), 1978-1987
- https://doi.org/10.1093/carcin/bgi165
Abstract
Resveratrol is one of the most extensively studied cancer chemopreventive agents; however, its mechanisms of action are not completely understood. Here, we observed that resveratrol induces S phase arrest via Tyr15 phosphorylation of Cdc2 in human ovarian carcinoma Ovcar-3 cells. Overexpression of Cdc2AF, a mutant resistant to Thr14 and Tyr15 phosphorylation, ablated resveratrol-induced S phase arrest. Further upstream, we observed that resveratrol causes phosphorylation of cell division cycle 25C (Cdc25C) tyrosine phosphatase via the activation of checkpoint kinases Chk1 and Chk2, which in turn were activated via ATM (ataxia telangiectasia mutated)/ATR (ataxia telangiectasia-Rad3-related) kinase in response to DNA damage, as resveratrol also increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM/ATR in response to DNA damage. The involvement of these molecules in resveratrol-induced S phase was also supported by the studies showing that addition of ATM/ATR inhibitor caffeine reverses resveratrol-caused activation of ATM/ATR–Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X, and S phase arrest. In additional studies assessing whether observed effects of resveratrol are specific to Ovcar-3 cells, we observed that it also induces S phase arrest and H2A.X (Ser139) phosphorylation in other ovarian cancer cell lines PA-1 and SKOV-3, albeit at different levels; whereas, resveratrol showed only marginal S phase arrest in normal human foreskin fibroblasts with undetectable level of phospho-H2A.X (Ser139). These findings for the first time identify that resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR–Chk1/2–Cdc25C pathway as a central mechanism for DNA damage and S phase arrest selectively in ovarian cancer cells, and provide a rationale for the potential efficacy of ATM/ATR agonists in the prevention and intervention of cancer.Keywords
This publication has 43 references indexed in Scilit:
- Sulforaphane-induced G2/M Phase Cell Cycle Arrest Involves Checkpoint Kinase 2-mediated Phosphorylation of Cell Division Cycle 25CJournal of Biological Chemistry, 2004
- Cancer Statistics, 2004CA: A Cancer Journal for Clinicians, 2004
- Cancer chemoprevention with dietary phytochemicalsNature Reviews Cancer, 2003
- Dual phosphorylation controls Cdc25 phosphatases and mitotic entryNature Cell Biology, 2003
- ATM Mediates Phosphorylation at Multiple p53 Sites, Including Ser46, in Response to Ionizing RadiationJournal of Biological Chemistry, 2002
- Effect of Resveratrol on Growth of 4T1 Breast Cancer Cells in Vitro and in VivoBiochemical and Biophysical Research Communications, 2002
- Ovarian cancer cells that coexpress endogenous Rb and p16 are insensitive to overexpression of functional p16 proteinOncogene, 2000
- Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from GrapesScience, 1997
- Role of cdc25-C phosphatase in the immediate G2 delay induced by the exogenous factors epidermal growth factor and phorbolesterJournal of Cellular Physiology, 1996
- Fruit, vegetables, and cancer prevention: A review of the epidemiological evidenceNutrition and Cancer, 1992