Inhibition and restart of initiation of chromosome replication: effects on exponentially growing Escherichia coli cells

Abstract
Escherichia coli strains in which initiation of chromosome replication could be specifically blocked while other cellular processes continued uninhibited were constructed. Inhibition of replication resulted in a reduced growth rate and in inhibition of cell division after a time period roughly corresponding to the sum of the lengths of the C and D periods. The division inhibition was not mediated by the SOS regulon. The cells became elongated, and a majority contained a centrally located nucleoid with a fully replicated chromosome. The replication block was reversible, and restart of chromosome replication allowed cell division and rapid growth to resume after a time delay. After the resumption, the septum positions were nonrandomly distributed along the length axis of the cells, and a majority of the divisions resulted in at least one newborn cell of normal size and DNA content. With a transient temperature shift, a single synchronous round of chromosome replication and cell division could be induced in the population, making the constructed system useful for studies of cell cycle-specific events. The coordination between chromosome replication, nucleoid segregation, and cell division in E. coli is discussed.