Abstract
Models of industrial robots are characterized by highly nonlinear equations with nonlinear couplings between the variables of motion. In this paper, three nonlinear methods are presented, two of which are direct design procedures for industrial robots. These direct nonlinear methods are based on a suitable partition of the dynamic equation of the industrial robot and provide directly applicable, explicit control laws for each drive. The design procedures presented greatly simplify the derivation of the algorithm for computer-controlled industrial robots. The methods are applied to two different types of industrial robots.

This publication has 5 references indexed in Scilit: