Abstract
Actin was purified from calf thymus, bovine brain and SV40-transformed mouse 3T3 cells grown in tissue culture. Isoelectric focusing analysis showed the presence of the two actin polypeptides β and γ typical for non-muscle actins in all three actins. Tryptic and thermolytic peptides accounting for the complete amino-acid sequence of the cytoplasmic actins were separated and isolated by preparative fingerprint techniques. All peptides were characterized by amino-acid analysis and compared with the corresponding peptides from rabbit skeletal muscle actin. Peptides which differed in amino-acid composition from the corresponding skeletal muscle actin peptides were subjected to sequence analysis in order to localize the amino-acid replacement. The results obtained show that all three mammalian cytoplasmic actins studied contain the same amino-acid exchanges indicating that mammalian cytoplasmic actins are very similar if not identical in amino-acid sequence. The presence of two different isoelectric species β and γ in cytoplasmic actins from higher vertebrates is accounted for by the isolation of two very similar but not identical amino-terminal peptides in all three actin preparations. The nature of the amino-acid replacements in these two peptides not only accounts for the different isoelectric forms but also shows that β and γ cytoplasmic actins are the products of two different structural genes expressed in the same cell. The total number of amino-acid replacements so far detected in the comparison of these cytoplasmic actins and skeletal muscle actin is 25 for the β chain and 24 for the γ chain. With the exception of the amino-terminal three or four residues, which are responsible for the isoelectric differences, the replacements do not involve charged amino acids. The exchanges are not randomly distributed. No replacements were detected in regions 18–75 and 299–356 while the regions between residues 2–17 and 259–298 show a high number of replacements. In addition documentation for a few minor revisions of the amino acid sequence of rabbit skeletal muscle actin is provided.