Studies of Iron:Zinc Interactions in Adult Rats and the Effect of Iron Fortification of Two Commercial Infant Weaning Products on Iron and Zinc Status of Weanling Rats

Abstract
The effect of iron on zinc absorption in the rat, and vice versa, was investigated from single starch:sucrose test meals (containing 65Zn or 59Fe) by whole body counting. Zinc had no effect on iron absorption, but iron reduced zinc absorption when the total ionic species in the meal (iron plus zinc) reached 1.36 mg. Below this level, high iron:zinc molar ratios (10:1) had no effect on zinc absorption, presumably because the transport mechanism for zinc had not reached full capacity. Previous iron intake had no effect on zinc absorption. The relevance of these findings to infant foods was explored by feeding rats exclusively a vegetable or cereal weaning product, with or without additional iron, for 12 d and measuring zinc and iron status. The added iron raised body iron stores and caused a small reduction in zinc status in animals fed the oat, but not the vegetable, diet as measured by plasma and femur zinc concentrations. Since the threshold level of 1.36 mg ionic species would be exceeded when the animal ate 3–4 g of the iron-fortified weaning food at any one time, it appears that the iron:zinc interactive effect was absent in the vegetable and less potent in the oat formulation than in a carbohydrate test meal. Alternatively, it may be the case that the animals had responded over time to reduced zinc availability by increasing whole body zinc retention. These results suggest that iron fortification of infant foods should not prejudice zinc status, but a cautionary approach to excessive iron supplementation of infant foods should be adopted until there is a greater understanding of the influence of the food matrix on iron:zinc interactions.