Whey protein denaturation in heated milk and cheese whey

Abstract
SUMMARY: Quantitative polyacrylamide gel electrophoresis has been used to measure residual native whey proteins remaining after heat treatment of skim-milk and cheese whey in a kinetic study. The denaturation of α-lactalbumin (α-la) appeared to be first order, but was probably a second-order reaction displaying pseudo first-order kinetics. The denaturation of both β-lactoglobulin A and B (β-lgA and β-lgB) followed second-order kinetics while that of serum albumin was more complex, and could equally well be described as first or second order. Equations are given relating logk1(in s-1) to temperature for α-la denaturation in skim-milk between 70 and 95 °C and between 100 and 150 °C. Similarly, equations relating logk2(in lg-1s-1) to temperature are given for ²-lgA in skim-milk between 100 and 150 °C, and for ²-lgB between 95 and 150 °C. The relative heat stability of ²-lgA and ²-lgB was found to vary.Below 95 °C ²-lgA appeared slightly more thermostable than ²-lgB in skim-milk, and the same was observed in cheese whey below 100 °C. Above these temperatures ²-lgB appeared more stable than ²-lgA.Denaturation of ²-lgB was only slightly more rapid in skim-milk than in whey at temperatures below 95 °C, but was significantly slower at higher temperatures.