A reciprocal phase-perturbation theory for rough-surface scattering

Abstract
We study the scattering of a scalar plane wave from a two-dimensional, randomly rough surface, on which the Dirichlet boundary condition is satisfied. The scattering amplitude is obtained in the form of the Fourier transform of an exponential, in which the exponent is written as an expansion in powers of the surface profile function. It is shown that the latter expansion can be written in such a way that the corresponding scattering matrix is manifestly reciprocal. Numerical results for the reflectivity, and for the contribution to the mean differential reflection coefficient from the incoherent component of the scattered field, are obtained and compared with the predictions of small-amplitude perturbation theory and the Kirchhoff approximation. As the wavelength of the incident wave is varied continuously the results of the phase-perturbation theory change continuously from those of the small-amplitude perturbation theory to those of the Kirchhoff approximation.

This publication has 16 references indexed in Scilit: