Tight-binding total-energy models for silicon and germanium

Abstract
By accurately fitting tight-binding parameters to ab initio band structures from 14 different tetrahedral volumes, tight-binding parametric formulas have been developed for silicon and germanium. The distance dependences for these orthogonal, nearest-neighbor parameters range from r2.5 to r3.3. Repulsive potentials are added in order to reproduce the total energies for a number of bulk structures. It is found that the repulsive potential needed has the simple form of a pairwise interaction multiplied by a structure-dependent constant. Transferability is shown with good bulk and cluster results.