Poisoning of human DNA topoisomerase I by ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor groove
Open Access
- 22 June 1999
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 96 (13), 7196-7201
- https://doi.org/10.1073/pnas.96.13.7196
Abstract
Ecteinascidin 743 (Et743, National Service Center 648766) is a potent antitumor agent from the Caribbean tunicate Ecteinascidia turbinata. Although Et743 is presently in clinical trials for human cancers, the mechanisms of antitumor activity of Et743 have not been elucidated. Et743 can alkylate selectively guanine N2 from the DNA minor groove, and this alkylation is reversed by DNA denaturation. Thus, Et743 differs from other DNA alkylating agents presently in the clinic (by both its biochemical activities and its profile of antitumor activity in preclinical models). In this study, we investigated cellular proteins that can bind to DNA alkylated by Et743. By using an oligonucleotide containing high-affinity Et743 binding sites and nuclear extracts from human leukemia CEM cells, we purified a 100-kDa protein as a cellular target of Et743 and identified it as topoisomerase I (top1). Purified top1 was then tested and found to produce cleavage complexes in the presence of Et743, whereas topoisomerase II had no effect. DNA alkylation was essential for the formation of top1-mediated cleavage complexes by Et743, and the distribution of the drug-induced top1 sites was different for Et743 and camptothecin. top1–DNA complexes were also detected in Et743-treated CEM cells by using cesium chloride gradient centrifugation followed by top1 immunoblotting. These data indicate that DNA minor groove alkylation by Et743 induces top1-mediated protein-linked DNA breaks and that top1 is a target for Et743 in vitro and in vivo.Keywords
This publication has 30 references indexed in Scilit:
- Molecular Basis for the DNA Sequence Selectivity of Ecteinascidin 736 and 743: Evidence for the Dominant Role of Direct Readout via Hydrogen BondingJournal of the American Chemical Society, 1998
- Mammalian DNA Topoisomerase I Activity and Poisoning by Camptothecin Are Inhibited by Simian Virus 40 Large T AntigenBiochemistry, 1998
- Differential Poisoning of Topoisomerases by Menogaril and Nogalamycin Dictated by the Minor Groove-Binding Nogalose SugarBiochemistry, 1997
- NMR-Based Model of an Ecteinascidin 743−DNA AdductJournal of the American Chemical Society, 1997
- DNA Sequence- and Structure-Selective Alkylation of Guanine N2 in the DNA Minor Groove by Ecteinascidin 743, a Potent Antitumor Compound from the Caribbean Tunicate Ecteinascidia turbinataBiochemistry, 1996
- Substituted 2,5‘-Bi-1H-benzimidazoles: Topoisomerase I Inhibition and CytotoxicityJournal of Medicinal Chemistry, 1996
- Differential Stabilization of Eukaryotic DNA Topoisomerase I Cleavable Complexes by Camptothecin DerivativesBiochemistry, 1995
- Overexpression of Human DNA Topoisomerase I in Insect Cells Using a Baculovirus VectorProtein Expression and Purification, 1994
- Bioactive Compounds from Aquatic and Terrestrial SourcesJournal of Natural Products, 1990
- Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase IIBiochemistry, 1986