Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution

Abstract
Intramolecular G-quadruplexes formed by the human telomeric G-rich strand are promising anticancer targets. Here we show that four-repeat human telomeric DNA sequences can adopt two different intramolecular G-quadruplex folds in K+ solution. The two structures contain the (3+1) G-tetrad core, in which three G-tracts are oriented in one direction and the fourth in the opposite direction, with one double-chain-reversal and two edgewise loops, but involve different loop arrangements. This result indicates the robustness of the (3+1) core G-quadruplex topology, thereby suggesting it as an important platform for structure-based drug design. Our data also support the view that multiple human telomeric G-quadruplex conformations coexist in K+ solution. Furthermore, even small changes to flanking sequences can perturb the equilibrium between different coexisting G-quadruplex forms.