Negative cilia concept for thromboresistance: Synergistic effect of PEO and sulfonate groups grafted onto polyurethanes
- 1 May 1991
- journal article
- research article
- Published by Wiley in Journal of Biomedical Materials Research
- Vol. 25 (5), 561-575
- https://doi.org/10.1002/jbm.820250502
Abstract
In order to investigate the interaction between various sulfonated polyurethanes (PUs) and blood, a commercial PU surface was chemically modified by poly(ethylene oxide) (PEO), dodecanediol(DDO), and propane sultone to give hydrophilic, hydrophobic, and negative sulfonated surfaces, respectively. The blood compatibility of modified PUs was evaluated by an in vitro platelet adhesion test, activated partial thromboplastin time (APTT), and prothrombin time (PT) measurements as well as an ex vivo rabbit A-A shunt method. In the platelet adhesion test, the hydrophilic PEO grafted PUs showed less platelet adhesion than untreated PU and hydrophobic DDO grafted PU. Sulfonated PU-PEO exhibited a lower degree of adhesion and shape change of platelet. The APTT and PT, especially APTT, of the sulfonated PUs were extended, whereas those of PU-PEO and PU-DDO did not show any significant change compared with untreated PU. Meanwhile, in the ex vivo experiment, hydrophilic PEO grafted PUs showed longer occlusion times than untreated PU or hydrophobic DDO grafted PU. In addition, the incorporation of SO3 groups at the end of PU-DDO and PU-PEO, particularly PU-PEO-SO3, exhibited an enormous prolongation in occlusion time, indicating a synergistic effect of the hydrophilic PEO and the negative SO3 groups on thromboresistance. These occlusion times corresponded well to in vitro evaluation results: the less adhesion and shape change of platelet and the longer APTT and PT, the more extended the ex vivo occlusion time.Keywords
This publication has 14 references indexed in Scilit:
- Surface modification of polyurethane for enhanced blood compatibilityMakromolekulare Chemie. Macromolecular Symposia, 1990
- Series shunt evaluation of polyurethane vascular graft materials in chronically AV‐shunted caninesJournal of Biomedical Materials Research, 1990
- In vitro and ex vivo platelet interactions with hydrophilic‐hydrophobic poly(ethylene oxide)‐polystyrene multiblock copolymersJournal of Biomedical Materials Research, 1989
- Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanesJournal of Biomedical Materials Research, 1989
- Protein‐resistant surfaces prepared by PEO‐containing block copolymer surfactantsJournal of Biomedical Materials Research, 1989
- Heparin immobilization onto segmented polyurethaneurea surfaces—effect of hydrophilic spacersJournal of Biomedical Materials Research, 1988
- Surfaces and Blood Compatibility Current HypothesesAsaio Journal, 1987
- Polyether—urethane ionomers: surface property/ex vivo blood compatibility relationshipsJournal of Colloid and Interface Science, 1985
- Synthesis of polysulfohexyl methacrylate with anticoagulant activityJournal of Polymer Science: Polymer Chemistry Edition, 1982
- Importances of Polar Groups for initiating Blood Coagulation and aggregating PlateletsNature, 1969