Convection due to internal heat sources

Abstract
This paper is concerned with convection generated by uniformly distributed internal heat sources. By a numerical method it is found that the planform is down-hexagons for infinite Prandtl numbers and Rayleigh numbers up to at least 15 times the critical value. The motion is also studied for finite Prandtl numbers and small supercritical Rayleigh numbers by using an amplitude expansion. It turns out that a small subcritical regime exists. Moreover, it also emerges that for Prandtl numbers less than 0.25 the stable planform is up-hexagons. In §3 a necessary condition in order to obtain a hexagonal planform is derived when the coefficients in the differential equations are a function of the vertical co-ordinate z.