The influence of the Robertsonian translocation Rb(X.2)2Ad on anaphase I non-disjunction in male laboratory mice

Abstract
Summary: A Robertsonian translocation in the mouse between theXchromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of theX-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meoisis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10·8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3·9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad andYwere studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3·2% of the cells analysed in the electron microscope. The pairing between theXand theYchromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes. The Rb2Ad chromosome can be useful for studies ofXinactivation, as a marker for parental derivation of theXchromosome and for mapping loci byin situhybridization.