Participation of adrenergic and noradrenergic neurones in central connections of arterial baroreceptor reflexes in the rat.
- 1 October 1979
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 45 (4), 516-522
- https://doi.org/10.1161/01.res.45.4.516
Abstract
We examined activities of tyrosine hydroxylase (TH) and phenylethanolamine-N-methyl transferase (PNMT) and concentrations of norepinephrine (NE) in seven brain regions and the spinal cord of Wistar rats with elevated blood pressures 1 week and 4 weeks after denervation of carotid and aortic baroreceptors, and compared them to values in sham-operated control rats. TH activity was increased in the solitary tract nucleus (to 188% of control), parahypoglossal nucleus (to 254%), locus ceruleus (to 191%), and posterior hypothalamus (to 225%) at 1 week but not at 4 weeks after denervation. Similarly, NE concentrations were significantly altered in a number of brain regions at 1 week but not at 4 weeks after denervation. The only change in NE concentration at 4 weeks was in spinal cord where the level was reduced to 80% of control in the denervated rats. In contrast, the only change in PNMT activity 1 week after denervation was in posterior hypothalamus (to 59% of control), whereas at 4 weeks there was in increase in the spinal cord (to 159%) and a decrease in both the anterior and posterior hypothalamus (to 59% and 64% of control, respectively). The experiments suggest that increased activity of noradrenergic neurones in the brain may play a significant role in initiating the increase in pressure produced by baroreceptor denervation, whereas decreased activity of hypothalamic adrenergic neurones may be more important in maintaining the raised pressure. An increase in the activity of both adrenergic and noradrenergic nerves in the spinal cord, however, could contribute to maintaining the increase in blood pressure 4 weeks after denervation.This publication has 19 references indexed in Scilit:
- Catecholamine synthesizing enzymes in brain stem and hypothalamus during the development of renovascular hypertensionBrain Research, 1979
- Changes in noradrenaline concentration in brain stem and hypothalamic nuclei during the development of renovascular hypertensionBrain Research, 1977
- Neuroanatomy of Central Cardiovascular Control. Nucleus Tractus Solitarii: Afferent and Efferent Neuronal Connections in Relation to the Baroreceptor Reflex ArcPublished by Elsevier ,1977
- Adrenaline-Forming Enzyme in Brainstem: Elevation in Genetic and Experimental HypertensionScience, 1976
- A sensitive radioenzymatic assay for norepinephrine in tissues and plasmaLife Sciences, 1975
- Localisation of phenylethanolamine N-methyl transferase in the rat brain nucleiNature, 1974
- Immunohistochemical evidence for the existence of adrenaline neurons in the rat brainBrain Research, 1974
- Isolated removal of hypothalamic or other brain nuclei of the ratBrain Research, 1973
- Catecholamine Synthesis in Rabbits with Neurogenic HypertensionCirculation Research, 1969
- Baroreceptor Function Revealed by Acute Sinoaortic Denervation in Spontaneously Hypertensive RatsJapanese Circulation Journal, 1969