Feasibility and development of a high-power real accommodating intraocular lens

Abstract
To develop an accommodating intraocular lens (IOL) that changes power with ciliary body action and generates a minimum of 8.0 diopters (D) by manipulation of a flexible material between a sulcus-fixated rigid plate and a ciliary muscle-operated capsular diaphragm. Vissum-Instituto Oftalmológico de Alicante and Miguel Hernández University, Alicante, Spain. The feasibility of the concept was tested by a laboratory lens model. An implantable measuring device was constructed to simulate the lens action. The device was implanted in monkey eyes to measure the various parameters involved with such IOLs. Based on these measurements, an accommodating IOL prototype was built and implanted in monkeys' eyes. Pharmacologic agents were used to achieve ciliary relaxation and spasm. Ultrasound biomicroscopy (UBM) imaging was used to document the active changes of the IOL flexible lens curvature as related to the ciliary muscles status. The laboratory model produced more than 50.0 D of accommodation. The UBM demonstrated changes in lens curvature between cyclospasm to cycloplegia of calculated 9.0 to 53.0 D for flexible material with a refractive index of 1.41. Flexible material is capable of being manipulated when placed between a scleral-fixated rigid plane and the ciliary muscles-operated capsular diaphragm. Such manipulation as used by the IOL concept presented here has generated an active change of more than 40.0 D in the monkey eye.