Abstract
Samples of internal membrane systems separated from lysates of intact plastids from dark grown Avena sativa L. (vars, Cooba and Mostyn) and Hordeum vulgare L. (vars, Himalaya and Deba Abed) given different periods of illumination before isolation were assayed for trypsin-activated Ca2+-dependent ATPase activities and also examined in the electron microscope after treatment in the manner described by Oleszko and Moudinanakis (1974) which assists the visualization of the chloroplast coupling factor (CF1) particles. Concentrations of membrane-attached CF1 particles were not observed on the membrane surfaces of the prolamellar bodies (PLBs) proper but only on the attached extruded lamellar membranes. Increasing lengths of illumination followed by plastid isolation and subsequent membrane separation had the effect of progressively increasing the mean distance between these individual lamellar-attached CF1 particles. Measurements of trypsin-activated Ca2+-dependent ATPase activities during similar developmental regimes indicated that functions associated with CE1 particles are relative constant and largely independent of the period of illumination if the values were expressed on a per plastid basis indicating that assembly of CF1 particles may take place in either etioplasts, etiochloroplasts or mature chloroplasts.