Coherent Spectroscopy of Optically Gated Charged Single InGaAs Quantum Dots

Abstract
The excited states of neutral and charged single InGaAs/GaAs quantum dots are studied using a confocal microspectroscopy technique. Because of their different Coulomb energy shifts, the charged and neutral states of the same quantum dot can be selectively excited. The charge of the quantum dot is controlled by a photo-depletion mechanism. Time-resolved coherent spectroscopy shows that the dephasing time of the excited states is longer when the quantum dot is charged. Rabi oscillation of the excited state of a singly charged quantum dot is demonstrated.